在长方体中,
分别是
的中点,
,
.
(Ⅰ)求证://平面
;
(Ⅱ)在线段上是否存在点
,使直线
与
垂直,
如果存在,求线段的长,如果不存在,请说明理由.
(本小题满分12分)
已知函数,
.
(Ⅰ)当时,求曲线
在点
处的切线方程;
(Ⅱ)求函数的单调区间.
(本小题满分12分)
已知点是椭圆
:
上一点,
分别为
的左右焦点,
,且离心率为
.
(Ⅰ)求椭圆的方程;
(Ⅱ)设过椭圆右焦点的直线
和椭圆交于两点
,是否存在直线
,使得△
与△
的面积比值为
?若存在,求出直线
的方程;若不存在,说明理由.
(本小题满分12分)
如图,在三棱锥中,⊿
是等边三角形,
是以
为斜边的等腰直角三角形.
(Ⅰ)证明:AB⊥PC;
(Ⅱ),求三棱锥
体积.
(本小题满分12分)
为了解大学生身体素质情况,从某大学共800名男生中随机抽取50人测量身高。 据测量,被测学生身高全部介于155cm到195cm之间,将测量结果按如下方式分成八组:第一组;第二组
;…;第八组
.如图是按上述分组方法得到的频率分布直方图.
(1)估计这所学校高三年级全体男生身高在180cm以上(含180cm)的人数;
(2)若从身高属于第六组和第八组的所有男生中随机抽取两人,记他们的身高分别为,求满足“
”的事件的概率.
(本小题满分12分)
已知向量,
,函数
的图象与直线
的相邻两个交点之间的距离为
.
(Ⅰ)求函数的单调递增区间;
(Ⅱ)将函数的图象向右平移
个单位,得到函数
的图象.若
在
上至少含有
个零点,求
的最小值.