设函数f(x)=ax2+8x+3a<0
。对于给定的负数a,有一个最大的正数l(a),使得在整个区间[0,l(a)]上,不等式|f(x)|≤5恒成立.问:a为何值时,l(a)最大?求出这个最大的l(a),证明你的结论.
(本小题15分)已知,
是实数,方程
有两个实根
,
,数列
满足
,
,
(Ⅰ)求数列的通项公式(用
,
表示);
(Ⅱ)若,
,求
的前
项和.
(本小题满分14分)设直线(其中
,
为整数)与椭圆
交于不同两点
,
,与双曲线
交于不同两点
,
,问是否存在直线
,使得向量
,若存在,指出这样的直线有多少条?若不存在,请说明理由.
(本小题满分14分)已知.
(1)若,函数
在其定义域内是增函数,求
的取值范围.
(2)在(1)的结论下,设,求函数
的最小值;
(3)若的图象与
轴交于
,
中点为
,求证:
.
(本小题满分13分)直线与椭圆
交于
,
两点,已知
,
,若
且椭圆的离心率
,又椭圆经过点
,
为坐标原点.
(Ⅰ)求椭圆的方程;
(Ⅱ)若直线过椭圆的焦点
,(
为半焦距),求直线
的斜率
的值;
(Ⅲ)试问:的面积是否为定值?如果是,请给予证明;如果不是,请说明理由.
(本小题满分13分)已知数列的前
项和为
,数列
满足
,
.
(1)求数列的通项公式;(2)求数列
的前
项和
;
(3)是否存在非零实数,使得数列
为等差数列,证明你的结论.