已知{an}是公比为q的等比数列,且a1,a3,a2成等差数列.
(Ⅰ)求q的值;
(Ⅱ)设{bn}是以2为首项,q为公差的等差数列,其前n项和为Sn,当n≥2时,比较Sn与bn的大小,并说明理由.
(本小题满分12分) 已知曲线,从
上的点
作
轴的垂线,交
于点
,再从点
作
轴的垂线,交
于点
,
设.。
求数列
的通项公式;
记
,数列
的前
项和为
,试比较
与
的大小
;
记
,数列
的前
项和为
,试证明:
。
( 本小题满分12分)如图所示,已知圆为圆上一动点,点
在
上,点
在
上,且满足
的轨迹为曲线
。
求曲线
的方程;
若过定点F(0,2)的直线交曲线
于不同的两点
(点
在点
之间),且满足
,求
的取值范围。
(本小题满分12分)已知函数。
如果
,函数在区间
上存在极值,求实数a的取值范围;
当
时,不等式
恒成立,求实数k的取值范围。
(本小题满分13分)已知抛物线上一动点
,抛物线内一点
,
为焦点且
的最小值为
。
求抛物线方程以及使得|PA|+|PF|最小时的P点坐标;
过(1)中的P点作两条互相垂直的直线与抛物线分别交于C、D两点,直线CD是否过一定点? 若是,求出该定点坐标; 若不是,请说明理由。
(本小题满分13分)设数列的前
项和为
,且
;数列
为等差数列,且
。
求证:数列
是等比数列,并求
通项公式;
若
,
为数列
的前
项和,求
。