(本小题满分12分)如图,在正三棱柱中,△
是边长为
的等边三角形,
平面
,
,
分别是
,
的中点.
(Ⅰ)求证:∥平面
;
(Ⅱ)若到
的距离为
,求正三棱柱
的体积.
已知圆的圆心在坐标原点
,且恰好与直线
相切,设点A为圆上一动点,
轴于点
,且动点
满足
,设动点
的轨迹为曲线
(1)求曲线C的方程,
(2)直线l与直线l,垂直且与曲线C交于B、D两点,求△OBD面积的最大值.
如图,四棱锥中,底面
为平行四边形,
底面
(1)证明:平面平面
;
(2)若二面角大小为
,求
与平面
所成角的正弦值.
某市教育局为了了解高三学生体育达标情况,在某学校的高三学生体育达标成绩中随机抽取100个进行调研,按成绩分组:第l组[75,80),第2组[80,85),第3组[85,90),第4组[90,95),第5组[95,100]得到的频率分布直方图如图所示:
若要在成绩较高的第3,4,5组中用分层抽样抽取6名学生进行复查:
(1)已知学生甲和学生乙的成绩均在第四组,求学生甲和学生乙至少有一人被选中复查的概率;
(2)在已抽取到的6名学生中随机抽取3名学生接受篮球项目的考核,设第三组中有三名学生接受篮球项目的考核,求暑的分布列和数学期望.
已知函数相邻两个对称轴之间的距离是
,且满足,
(1)求的单调递减区间;
(2)在钝角△ABC中,a、b、c分别为角A、B、C的对边,sinB=,求△ABC的面积。
设不等式的解集为M,
.
(1)证明:;
(2)比较与
的大小,并说明理由.