(本小题满分15分)已知二次函数,关于
的不等式
的解集为
,(
),设
.
(Ⅰ)求的值;
(Ⅱ)若函数的一个极值点是
,求
的值域;
(Ⅲ)若函数存在三个极值点,求
的取值范围.
已知函数,不等式
在
上恒成立.
(Ⅰ)求的取值范围;
(Ⅱ)记的最大值为
,若正实数
满足
,求
的最大值.
在直角坐标平面内,以坐标原点O为极点,x轴的非负半轴为极轴建立极坐标系.已知曲线的参数方程为
,曲线
的极坐标方程为
.
(Ⅰ)将曲线的参数方程化为普通方程;
(Ⅱ)判断曲线与曲线
的交点个数,并说明理由.
已知矩阵A=有一个属于特征值1的特征向量
.
(Ⅰ) 求矩阵A;
(Ⅱ) 矩阵B=,点O(0,0),M(2,-1),N(0,2),求
在矩阵AB的对应变换作用下所得到的
的面积.
已知函数.
(Ⅰ)若,求曲线
在点
处的切线方程;
(Ⅱ)求函数的单调区间;
(Ⅲ)设函数.若至少存在一个
,使得
成立,求实数
的取值范围.
已知椭圆经过点
,且两焦点与短轴的一个端点构成等腰直角三角形.
(Ⅰ)求椭圆的方程;
(Ⅱ)动直线交椭圆
于
、
两点,试问:在坐标平面上是否存在一个定点
,使得以
为直径的圆恒过点
.若存在,求出点
的坐标;若不存在,请说明理由.