将﹣15,﹣12,﹣9,﹣6,﹣3,0,3,6,9填入下列小方格,使横,竖,斜对角的三个数字的和相等.
|
|
|
|
|
|
|
|
|
(·吉林长春)如图,在等边中,
于点
,点
在边
上运动,过点
作
与边
交于点
,连结
,以
为邻边作□
,设□
与
重叠部分图形的面积为
,线段
的长为
(1)求线段的长(用含
的代数式表示);
(2)当四边形为菱形时,求
的值;
(3)求与
之间的函数关系式;
(4)设点关于直线
的对称点为点
,当线段
的垂直平分线与直线
相交时,设其交点为
,当点
与点
位于直线
同侧(不包括点
在直线
上)时,直接写出
的取值范围.
(·吉林长春)在矩形中,已知
,在边
上取点
,使
,连结
,过点
作
,与边
或其延长线交于点
.
猜想:如图①,当点在边
上时,线段
与
的大小关系为 .
探究:如图②,当点在边
的延长线上时,
与边
交于点
.判断线段
与
的大小关系,并加以证明.
应用:如图②,若利用探究得到的结论,求线段
的长.
(·吉林长春)如图,是
外角
的平分线,
交于
点交于点
,
交于
点交于点
,求证:四边形
是菱形.
(·吉林省)如图,在▱ABCD中,AE⊥BC,交边BC于点E,点F为边CD上一点,且DF=BE.过点F作FG⊥CD,交边AD于点G.求证:DG=DC.
(·黑龙江牡丹江)已知四边形ABCD是正方形,等腰直角△AEF的直角顶点E在直线BC上(不与点B,C重合),FM⊥AD,交射线AD于点M.
(1)当点E在边BC上,点M在边AD的延长线上时,如图①,求证:AB+BE=AM;
(提示:延长MF,交边BC的延长线于点H.)
(2)当点E在边CB的延长线上,点M在边AD上时,如图②;当点E在边BC的延长线上,点M在边AD上时,如图③.请分别写出线段AB,BE,AM之间的数量关系,不需要证明;
(3)在(1),(2)的条件下,若BE=,∠AFM=15°,则AM= .