(本小题满分16分)已知数列中,,前项和为(Ⅰ)证明数列是等差数列,并求出数列的通项公式;(Ⅱ)设,数列的前项和为,求使不等式对一切都成立的最大正整数的值。
中,是上的点,平分面积是面积的2倍. (1)求; (2)若,求和的长.
已知分别为三个内角的对边,. (1)求; (2)若,的面积为,求.
中,为边上的一点,,求.
已知抛物线C:,P为C上一点且纵坐标为2,Q,R是C上的两个动点,且. (1)求过点P,且与C恰有一个公共点的直线的方程; (2)求证:QR过定点.
已知椭圆过点离心率, (1)求椭圆方程; (2)若过点的直线与椭圆C交于A、B两点,且以AB为直径的圆过原点,试求直线的方程.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号