游客
题文

(本小题满分12分)在△ABC中,角A,B,C的对边分别为a,b,c,且sinA+sinB=2sinC,a=2b.
(Ⅰ)证明:△ABC是钝角三角形;
(Ⅱ)若,求c的值.

科目 数学   题型 解答题   难度 中等
登录免费查看答案和解析
相关试题

(本小题满分13分)如图甲,在平面四边形中,已知,,,,现将四边形沿折起,使平面平面(如图乙),设点分别为棱的中点.

(1)证明平面
(2)求与平面所成角的正弦值;
(3)求二面角的余弦值.

(本小题满分13分)某批产品成箱包装,每箱件.一用户在购进该批产品前先取出箱,设取出的箱中,第一,二,三箱中分别有件,件,件二等品,其余为一等品.
(1)在取出的箱中,若该用户从第三箱中有放回的抽取次(每次一件),求恰有两次抽到二等品的概率;
(2)在取出的箱中,若该用户再从每箱中任意抽取件产品进行检验,用表示抽检的件产品中二等品的件数,求的分布列及数学期望.

(本小题满分13分)已知函数的最小正周期为.
(1)求的值;
(2)将函数的图象上各点的横坐标缩短到原来的,纵坐标不变,得到函
的图象,求函数在区间上的最小值.

本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分.
已知函数,其中.定义数列如下:,
(1)当时,求的值;
(2)是否存在实数,使构成公差不为的等差数列?若存在,请求出实数的值;若不存在,请说明理由;
(3)求证:当时,总能找到,使得

本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分6分.
已知椭圆)的焦距为,且椭圆的短轴的一个端点与左、右焦点构成等边三角形.
(1)求椭圆的标准方程;
(2)设为椭圆上上任意一点,求的最大值与最小值;
(3)试问在轴上是否存在一点,使得对于椭圆上任意一点的距离与到直线的距离之比为定值.若存在,求出点的坐标,若不存在,请说明理由.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号