游客
题文

烟台享有“苹果之乡”的美誉.甲、乙两超市分别用3000元以相同的进价购进质量相同的苹果.甲超市销售方案是:将苹果按大小分类包装销售,其中大苹果400千克,以进价的2倍价格销售,剩下的小苹果以高于进价10%销售.乙超市的销售方案是:不将苹果按大小分类,直接包装销售,价格按甲超市大、小两种苹果售价的平均数定价.若两超市将苹果全部售完,其中甲超市获利2100元(其它成本不计).问:
(1)苹果进价为每千克多少元?
(2)乙超市获利多少元?并比较哪种销售方式更合算.

科目 数学   题型 解答题   难度 中等
登录免费查看答案和解析
相关试题

已知:如下图,△ABC中,CD⊥AB于D,AC=4,BC=3,DB=.

(1)求DC的长;
(2)求AD的长;
(3)求AB的长;
(4)求证:△ABC是直角三角形.

已知,如图,等边三角形ABC,AD为BC边上的高线,若AB=2,求△ABC的面积.

已知,平面直角坐标系中,矩形OABC的边OC在x轴正半轴上,边OA在y轴正半轴上,B点的坐标为(4,3).将△AOC沿对角线AC所在的直线翻折,得到△AO’C,点O’为点O的对称点,CO’与AB相交于点E(如图①).

(1)试说明:EA=EC;
(2)求直线BO’的解析式;
(3)作直线OB(如图②),直线l平行于y轴,分别交x轴、直线OB、O’B于点P、M、N,设P点的横坐标为m(m>0).y轴上是否存在点F,使得ΔFMN为等腰直角三角形?若存在,请求出此时m的值;若不存在,请说明理由.

在一条笔直的河道上依次有A、B、C三个港口,甲、乙两船同时分别从A、B 港口出发,沿直线匀速驶向C港,最终到达C港.设甲、乙两船行驶x(h)后,与B港的距离分别为y1、y2(km),y1、y2与x的函数关系如图所示(点P、Q为图象的交点).

(1)填空:A、C两港口间的距离为km,a=
(2)求y1与x的函数关系式,并写出自变量x的取值范围;
(3)求图中点P的坐标,并解释该点坐标所表示的实际意义。

如图,正方形ABCD中,E是BC边上一动点,连接AE交BD于点F,

(1)连接FC,问∠FAD=∠FCD吗?请说明理由;
(2)若正方形的边长为8,△FCE的周长为12,求CE的长.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号