(本小题满分12分)如图,已知在直三棱柱中,
,
,点D是线段
的中点.
(Ⅰ)求证:∥平面
;
(Ⅱ)当三棱柱的体积最大时,求直线
与平面
所成角
的正弦值.
规定,其中x∈R,m是正整数,且
,这是组合数
(n、m是正整数,且m≤n)的一种推广.
(1) 求的值;
(2) 设x>0,当x为何值时,取得最小值?
(3) 组合数的两个性质;
①. ②
.
是否都能推广到(x∈R,m是正整数)的情形?若能推广,则写出推广的形式并给出证明;若不能,则说明理由.
已知函数f(x)=lnx-.
(1)当时,判断f(x)在定义域上的单调性;
(2)若f(x)在[1,e]上的最小值为,求
的值.
求证:..
已知在
时有极值0。
(1)求常数 的值;
(2)求的单调区间。
(3)方程在区间[-4,0]上有三个不同的实根时实数
的范围。
三个女生和五个男生排成一排.
(1)如果女生必须全排在一起,有多少种不同的排法?
(2)如果女生必须全分开,有多少种不同的排法?
(3)如果两端都不能排女生,有多少种不同的排法?
(4)如果两端不能都排女生,有多少种不同的排法?