游客
题文

.已知椭圆C的中心在原点,焦点在x轴上,离心率等于 ,它的一个顶点恰好是抛物线的焦点.

(Ⅰ)求椭圆C的方程;
(Ⅱ)点P(2,3), Q(2,-3)在椭圆上,A,B是椭圆上位于直线PQ两恻的动点,
①若直线AB的斜率为,求四边形APBQ面积的最大值;
②当A、B运动时,满足于∠APQ=∠BPQ,试问直线AB的斜率是否为定值,请说明理由.

科目 数学   题型 解答题   难度 中等
登录免费查看答案和解析
相关试题

已知抛物线y=x2上存在两个不同的点MN,关于直线y=-kx+对称,求k的范围.

设抛物线y2=4x截直线y=2x+k所得弦长|AB|=3.
(1)求k的值;
(2)以弦AB为底边,x轴上的P点为顶点组成的三角形面积为39时,求点P的坐标.

已知抛物线的顶点在原点,对称轴是x轴,抛物线上的点M(-3,m)到焦点的距离等于5,求抛物线的方程和M的值.

设数列的前项和为,若对所有正整数,都有
证明是等差数列.

设椭圆(a>b>0)的左顶点为A,若椭圆上存在一点P,使∠OPA=(O为原点),求椭圆离心率的取值范围.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号