.已知椭圆C的中心在原点,焦点在x轴上,离心率等于 ,它的一个顶点恰好是抛物线的焦点. (Ⅰ)求椭圆C的方程; (Ⅱ)点P(2,3), Q(2,-3)在椭圆上,A,B是椭圆上位于直线PQ两恻的动点, ①若直线AB的斜率为,求四边形APBQ面积的最大值; ②当A、B运动时,满足于∠APQ=∠BPQ,试问直线AB的斜率是否为定值,请说明理由.
(本小题满分10分) 数列、满足关系式. (1)化简式子; (2)若数列为等差数列,求证数列也是等差数列;
(本小题满分10分) (1)在等差数列中,d=2,n=15,求及 (2) )在等比数列中,求及q.
已知各项均为正数的数列中,是数列的前项和,对任意,有 (1)求常数的值; (2)求数列的通项公式; (3)记,求数列的前项和。
(
(已知是实数,函数. (Ⅰ)若,求的值及曲线在点处的切线方程; (Ⅱ)求在区间上的最大值.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号