(本小题满分12分)在年
月,某市进行了“居民幸福度”的调查,某师大附中学生会组织部分同学,用“
分制”随机调查“狮子山”社区人们的幸福度.现从调查人群中随机抽取
名,如图所示的茎叶图记录了他们的幸福度分数(以小数点前的一位数字为茎,小数点后的一位数字为叶).
(1)若幸福度不低于分,则称该人的幸福度为“极幸福”,求从这
人中随机选取
人,至
多有人是“极幸福”的概率;
(2)以这人的样本数据来估计整个社区的总体数据,若从该社区(人数很多)任选
人,记
表示抽到“极幸福”的人数,求的分布列及数学期望.
(本小题满分10分)选修4-4:坐标系与参数方程
在直角坐标系中,曲线
的参数方程为
(
为参数),以原点
为极点,以
轴正半轴为极轴,建立极坐标系,曲线
的极坐标方程为
.
求曲线
的普通方程与曲线
的直角坐标方程;
试判断曲线
与
是否存在两个交点,若存在,求出两交点间的距离;若不存在,说明理由.
(本小题满分10分)选修4-1:几何证明选讲
如图,过点作圆
的割线
与切线
,
为切点,连接
,
,
的平分线与
,
分别交于点
,
,其中
.
求证:
;
求
的大小.
(本小题满分12分)已知函数(
).
若函数
在
处取得极值,求
的值;
在
的条件下,求证:
;
当
时,
恒成立,求
的取值范围.
(本小题满分12分)在中,顶点
,
,
、
分别是
的重心和内心,且
.
求顶点
的轨迹
的方程;
过点
的直线交曲线
于
、
两点,
是直线
上一点,设直线
、
、
的斜率分别为
,
,
,求证:
.
(本小题满分12分)如图,在四棱锥中,
平面
,
,四边形
,
且
,点
为
中点.
求证:平面
平面
;
求点
到平面
的距离.