【改编】(本小题满分12分)已知函数.
(Ⅰ)设,若函数
在区间
上存在极值,求实数a的取值范围;
(Ⅱ)如果当时,不等式
恒成立,求实数k的取值范围.
如图,已知四边形与
均为正方形,平面
平面
.
(1)求证:平面
;
(2)求二面角的大小.
已知椭圆:
,直线
交椭圆
于
两点.
(Ⅰ)求椭圆的焦点坐标及长轴长;
(Ⅱ)求以线段为直径的圆的方程.
在打靶训练中,某战士射击一次的成绩在9环(包括9环)以上的概率是0.18,在8~9环(包括8环)的概率是0.51,在7~8环(包括7环)的概率是0.15,在6~7环(包括6环)的概率是0.09.计算该战士在打靶训练中射击一次取得8环(包括8环)以上成绩的概率和该战士打靶及格(及格指6环以上包括6环)的概率.
已知为椭圆
上的三个点,
为坐标原点.
(1)若所在的直线方程为
,求
的长;
(2)设为线段
上一点,且
,当
中点恰为点
时,判断
的面积是否为常数,并说明理由.
已知抛物线,点
,过
的直线
交抛物线
于
两点.
(1)若线段中点的横坐标等于
,求直线
的斜率;
(2)设点关于
轴的对称点为
,求证:直线
过定点.