(本小题12分)六名学生需依次进行身体体能和外语两个项目的训练及考核 每个项目只有一次补考机会,补考不合格者不能进入下一个项目的训练(即淘汰),若每个学生身体体能考核合格的概率是,外语考核合格的概率是
,假设每一次考试是否合格互不影响.
(1)求某个学生不被淘汰的概率.
(2)求6名学生至多有两名被淘汰的概率
(3)假设某学生不放弃每一次考核的机会,用表示其参加补考的次数,求随机变量
的分布列和数学期望.
已知向量,
,
.
(1)求的最小正周期;
(2)若A为等腰三角形ABC的一个底角,求的取值范围.
已知函数.
(1)求函数的单调区间;
(2)若方程有解,求实数m的取值范围;
(3)若存在实数,使
成立,求证:
.
已知椭圆的离心率为
,且经过点
. 过它的两个焦点
,
分别作直线
与
,
交椭圆于A、B两点,
交椭圆于C、D两点,且
.
(1)求椭圆的标准方程;
(2)求四边形的面积
的取值范围.
中国人口已经出现老龄化与少子化并存的结构特征,测算显示中国是世界上人口老龄化速度最快的国家之一,再不实施“放开二胎”新政策,整个社会将会出现一系列的问题.若某地区2012年人口总数为45万,实施“放开二胎”新政策后专家估计人口总数将发生如下变化:从2013年开始到2022年每年人口比上年增加万人,从2023年开始到2032年每年人口为上一年的99%.
(1)求实施新政策后第年的人口总数
的表达式(注:2013年为第一年);
(2)若新政策实施后的2013年到2032年人口平均值超过49万,则需调整政策,否则继续实施.问到2032年后是否需要调整政策?
在如图所示的几何体中,四边形ABCD为正方形,为等腰直角三角形,
,且
.
(1)证明:平面平面
.
(2)求直线EC与平面BED所成角的正弦值.