(本小题满分13分)在平面直角坐标系中,设锐角
的始边与
轴的非负半轴重合,终边与单位圆交于点
,将射线
绕坐标原点
按逆时针方向旋转
后与单位圆交于点
. 记
.
(Ⅰ)求函数的值域;
(Ⅱ)设的角
所对的边分别为
,若
,且
,
,求
.
(本小题满分12分)如图,在平面直角坐标系xoy中,角α的始边与x轴的非负半轴重合且与单位圆相交于A点,它的终边与单位圆相交于x轴上方一点B,始边不动,终边在运动.
(1)若点B的横坐标为,求tanα的值;
(2)若△AOB为等边三角形,写出与角α终边相同的角β的集合;
(3)若,请写出弓形AB的面积S与α的函数关系式.
(本小题满分12分)已知函数f(x)=sin(2ωx+φ)(ω>0,φ∈(0,π))的图象中相邻两条对称轴间的距离为
,且点(
,0)是它的一个对称中心.
(1)求f(x)的表达式;
(2)若f(ax)(a>0)在(0,)上是单调递减函数,求a的最大值.
(本小题满分12分)已知电流I与时间t的关系式为.
(1)下图是在一个周期内的图象,根据图中数据求
的解析式;
(2)如果t在任意一段秒的时间内,电流
都能取得最大值和最小值,那么ω的最小正整数值是多少?
【原创】(本小题满分12分)求的值。
已知cosα=并且α是第二象限的角.
(1)求sinα和tanα的值;
(2)求的值.