游客
题文

(本小题满分12分)
某校学生会进行了一次关于“消防安全”的调查活动,组织部分学生干部在几个大型小区随机抽取了50名居民进行问卷调查.活动结束后,团委会对问卷结果进行了统计,并将其中“是否知道灭火器使用方法(知道或不知道)”的调查结果统计如下表:

年龄(岁)
[10,20)
[20,30)
[30,40)
[40,50)
[50,60)
[60,70]
频数
m
n
14
12
8
6
知道的人数
3
4
8
7
3
2

 
(Ⅰ)求上表中的m、n的值,并补全右图所示的的频率直方图;
(Ⅱ)在被调查的居民中,若从年龄在[10,20),[20,30)的居民中各随机选取1人参加消防知识讲座,求选中的两人中仅有一人不知道灭火器的使用方法的概率.

科目 数学   题型 解答题   难度 较难
登录免费查看答案和解析
相关试题

已知f(x)=.
(1)当a=1时,求f(x)≥x的解集;
(2)若不存在实数x,使f(x)<3成立,求a的取值范围.

在直角坐标系中,曲线C1的参数方程为:为参数),以原点为极点,x轴的正半轴为极轴,并取与直角坐标系相同的长度单位,建立极坐标系,曲线C2是极坐标方程为:
(1)求曲线C2的直角坐标方程;
(2)若P,Q分别是曲线C1和C2上的任意一点,求的最小值.

已知相交于A、B两点,过A点作切线交于点E,连接EB并延长交于点C,直线CA交于点D,

(1)当点D与点A不重合时(如图1),证明:ED2=EB·EC;
(2)当点D与点A重合时(如图2),若BC=2,BE=6,求的直径长.

已知函数f(x)="xlnx" (x 1)(ax a+1)(a∈R).
(1)若a=0,判断f(x)的单调性;.
(2)若x>1时,f(x)<0恒成立,求a的取值范围.

椭圆c:(a>b>0)的离心率为,过其右焦点F与长轴垂直的弦长为1,
(1)求椭圆C的方程;
(2)设椭圆C的左右顶点分别为A,B,点P是直线x=1上的动点,直线PA与椭圆的另一个交点为M,直线PB与椭圆的另一个交点为N,求证:直线MN经过一定点.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号