已知关于的一元二次方程
的两个实数根为
,
.
(1)求k的取值范围。
(2)是否存在实数可k,使得成立?若存在,请求出k值,若不存在,请说明理由.
如图,在四边形 中, 为一条对角线, , , , 为 的中点,连接 .
(1)求证:四边形 为菱形;
(2)连接 ,若 平分 , ,求 的长.
关于 的一元二次方程 .
(1)求证:方程总有两个实数根;
(2)若方程有一个根小于1,求 的取值范围.
数学家吴文俊院士非常重视古代数学家贾宪提出的“从长方形对角线上任一点作两条分别平行于两邻边的直线,则所得两长方形面积相等(如图所示)”这一推论,他从这一推论出发,利用“出入相补”原理复原了《海岛算经》九题古证.
(以上材料来源于《古证复原的原理》、《吴文俊与中国数学》和《古代世界数学泰斗刘徽》
请根据该图完成这个推论的证明过程.
证明: , .
易知, , , .
可得 .
如图,在 中, , , 平分 交 于点 .
求证: .
在平面直角坐标系 中,点 的坐标为 , ,点 的坐标为 , ,且 , ,若 , 为某个矩形的两个顶点,且该矩形的边均与某条坐标轴垂直,则称该矩形为点 , 的"相关矩形",如图为点 , 的"相关矩形"示意图.
(1)已知点 的坐标为 ,
①若点 的坐标为 ,求点 , 的"相关矩形"的面积;
②点 在直线 上,若点 , 的"相关矩形"为正方形,求直线 的表达式;
(2) 的半径为 ,点 的坐标为 ,若在 上存在一点 ,使得点 , 的"相关矩形"为正方形,求 的取值范围.