如图,AB为半圆的直径,O为圆心,C为圆弧上一点,AD垂直于过C点的切线,垂足为D,AB的延长线交直线CD于点E.
(1)求证:AC平分∠DAB;
(2)若AB=4,B为OE的中点,CF⊥AB,垂足为点F,求CF的长;
(3)如图2,连接OD交AC于点G,若=
,求sin∠E的值.
据某气象中心观察和预测:发生于地的沙尘暴一直向正南方向移动,其移动速度
(km/h)与时间
(h)的函数图象如图所示.过线段
上一点
作横轴的垂线
,梯形
在直线
左侧部分的面积即为
h内沙尘暴所经过的路程
(km).
(1)当时,求
的值;
(2)将s随变化的规律用数学关系式表示出来;
(3)若城位于
地正南方向,且距
地650km,试判断这场沙尘暴是否会侵袭到
城.如果会,在沙尘暴发生后多长时间它将侵袭到
城?如果不会,请说明理由.
如图,是等边三角形,⊙O过点B,C,且与
的延长线分别交于点D,E.弦
∥
,
的延长线交
的延长线于点G.
(1)求证:是等边三角形;
(2)若,
,求
的长.
光明农场现有某种植物10 000kg,打算全部用于生产高科技药品和保健食品.若生产高科技药品,1kg该植物可提炼出0.01kg的高科技药品,将产生污染物0.1kg;若生产保健食品,1kg该植物可制成0.2kg的保健食品,同时产生污染物0.04kg.已知每生产1kg高科技药品可获利润5 000元,每生产1kg保健食品可获利润100元.要使总利润不低于410 000元,所产生的污染物总量不超过880kg,求用于生产高科技药品的该植物重量的范围.
如图,在的正方形网格中,每个小正方形的边长都为1.请在所给网格中按下列要求画出图形.
(1)从点A出发的一条线段AB,使它的另一个端点落在格点(即小正方形的顶点)上,且长度为;
(2)以(1)中的AB为边的一个等腰三角形ABC,使点C在格点上,且另两边的长都是无理数;
(3)以(1)中的AB为边的两个凸多边形,使它们都是中心对称图形且不全等,其顶点在格点上,各边长都是无理数.
今年“五一黄金周”期间,花果山风景区共接待游客约22.5万人.为了了解该景区的服务水平,有关部门从这些游客中随机抽取450人进行调查,请他们对景区的服务质量进行评分,评分结果的统计数据如下表:
档 次 |
第一档 |
第二档 |
第三档 |
第四档 |
第五档 |
分值a |
a≥90 |
80≤a<90 |
70≤a<80 |
60≤a<70 |
a<60 |
人 数 |
73 |
147 |
122 |
86 |
22 |
根据表中提供的信息,回答下列问题:
(1)所有评分数据的中位数应在第几档内?
(2)若评分不低于70分为“满意”,试估计今年“五一黄金周”期间对花果山景区服务“满意”的游客人数.