某餐厅中,一张桌子可坐6人,有以下两种摆放方式:
(1)有4张桌子,用第一种摆设方式,可以坐___________人;当有张桌子时,用第二种摆设方式可以坐___________人(用含有n的代数式表示).
(2)一天中午,餐厅要接待85位顾客共同就餐,但餐厅中只有20张这样的长方形桌子可用,且每4张拼成一张大桌子,若你是这家餐厅的经理,你打算选择哪种方式来摆放餐桌,为什么?
如图,正方形ABCD的四个顶点分别在四条平行线l1、l2、l3、l4上,这四条直
线中相邻两条之间的距离依次为h1、h2、h3(h1>0,h2>0,h3>0).
(1)求证:h1=h2;
(2)设正方形ABCD的面积为S,求证:S=(h1+h2)2+h12;
(3)若h1+h2=1,当h1变化时,说明正方形ABCD的面积S随h1的变化情况.
在△ABC中,∠ACB=90°,∠ABC=30°,将△ABC绕顶点C顺时针旋转,旋
转角为(0°<
<180°),得到△A1B1C.
(1)如图1,当AB∥CB1时,设A1B1与BC相交于点D.证明:△A1CD是等边三角形;
(2)如图2,连接AA1、BB1,设△ACA1和△BCB1的面积分别为S1、S2.求证:S1∶S2=1∶3;
(3)如图3,设AC的中点为E,A1B1的中点为P,AC=a,连接EP.当=°时,EP的长度最大,最大值为.
(1)求函数y1的表达式和点B的坐标;
(2)观察图象,比较当x>0时y1与y2的大小.
一次学科测验,学生得分均为整数,满分为10分,成绩达到6分以上(包括6
分)为合格,成绩达到9分为优秀.这次测验甲、乙两组学生成绩分布的条形统计图如下:
(1)请补充完成下面的成绩统计分析表:
(2)甲组学生说他们的合格率、优秀率均高于乙组,所以他们的成绩好于乙组.但乙组学生不同意甲组学生的说法,认为他们组的成绩要好于甲组.请你给出三条支持乙组学生观点的理由.
如图,某高速公路建设中需要确定隧道AB的长度.已知在离地面1500m高度C
处的飞机上,测量人员测得正前方A、B两点处的俯角分别为60°和45°.求隧道AB的长
(≈1.73).