某餐厅中,一张桌子可坐6人,有以下两种摆放方式:
(1)有4张桌子,用第一种摆设方式,可以坐___________人;当有张桌子时,用第二种摆设方式可以坐___________人(用含有n的代数式表示).
(2)一天中午,餐厅要接待85位顾客共同就餐,但餐厅中只有20张这样的长方形桌子可用,且每4张拼成一张大桌子,若你是这家餐厅的经理,你打算选择哪种方式来摆放餐桌,为什么?
学校计划选购甲、乙两种图书作为“校园读书节”的奖品.已知甲图书的单价是乙图书单价的1.5倍;用600元单独购买甲种图书比单独购买乙种图书要少10本.
(1)甲、乙两种图书的单价分别为多少元?
(2)若学校计划购买这两种图书共40本,且投入的经费不超过1050元,要使购买的甲种图书数量不少于乙种图书的数量,则共有几种购买方案?
如图,CD是⊙O的直径,且CD=2㎝,点P为CD的延长线上一点,过点P作⊙O的切线PA、PB,切点分别为A、B.
(1)连接AC,若∠APO=30°,试证明△ACP是等腰三角形;
(2)填空:①当DP=时,四边形AOBD是菱形;
②当DP=时,四边形PAOB是正方形.
请将式子:化简后,再选择一个合适的
的值代入求值.
(每小题5分,共10分)
(1)计算:;
(2)解方程:.
点P为抛物线(m为常数,m>0)上任一点,将抛物线绕顶点G逆时针旋转90°后得到的新图像与y轴交于A、B两点(点A在点B的上方),点Q为点P旋转后的对应点.
(1)如图(1)当m=2,点P横坐标为4时,求Q点的坐标;
(2)设点Q(a,b),用含m、b的代数式表示a;
(3)如图(2),点Q在第一象限内,点D在x轴的正半轴上,点C为OD的中点,QO平分∠AQC,AQ=2QC,当QD=m时,求m的值.