游客
题文

(本小题满分13分)某普通高中为了了解学生的视力状况,随机抽查了100名高二年级学生和100名高三年级学生,对这些学生配戴眼镜的度数(简称:近视度数)进行统计,得到高二学生的频数分布表和高三学生频率分布直方图如下:

近视度数
0–100
100–200
200–300
300–400
400以上
学生频数
30
40
20
10
0

 
将近视程度由低到高分为4个等级:当近视度数在0-100时,称为不近视,记作0;当近视度数在100-200时,称为轻度近视,记作1;当近视度数在200-400时,称为中度近视,记作2;当近视度数在400以上时,称为高度近视,记作3.
(Ⅰ)从该校任选1名高二学生,估计该生近视程度未达到中度及以上的概率;
(Ⅱ)设,从该校任选1名高三学生,估计该生近视程度达到中度或中度以上的概率;
(Ⅲ)把频率近似地看成概率,用随机变量分别表示高二、高三年级学生的近视程度,若,求.

科目 数学   题型 解答题   难度 较难
登录免费查看答案和解析
相关试题

已知四棱锥的底面为直角梯形,底面,且的中点。

(Ⅰ)证明:面
(Ⅱ)求所成角的余弦值;
(Ⅲ)求面与面所成二面角的余弦值。

已知函数内有极值,求实数的范围。

为实数且是虚数单位),求函数的值域。

设函数
(Ⅰ)求的解析式及定义域。(Ⅱ)求的值域。

已知函数.
(Ⅰ)当时,求曲线处的切线方程(
(Ⅱ)已知为函数的极值点,求函数的单调区间。

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号