(本小题满分12分)已知椭圆:
的上顶点为
,且离心率为
.
(1)求椭圆的方程;
(2)证明:过椭圆:
上一点
的切线方程为
;
(3)从圆上一点
向椭圆
引两条切线,切点分别为
,
,当直线
分别与
轴,
轴交于
,
两点时,求
的最小值.
.(本小题14分)椭圆的一个顶点为
,离心率
(1)求椭圆方程;
(2)若直线与椭圆交于不同的两点
,且满足
,
,求直线
的方程.
(本小题14分)已知函数.
(1)若,点P为曲线
上的一个动点,求以点P为切点的切线斜率取最小值时的切线方程;
(2)若函数在
上为单调增函数,试求
的取值范围.
(本小题13分)如图,在四棱锥中,
底面是矩形,侧棱PD⊥底面
,
,
是
的中点,作
⊥
交
于点
.
(1)证明:∥平面
;
(2)证明:⊥平面
.
(本小题12分)袋中有大小、形状相同的红、黑球各两个,现依次不放回地随机取3次,每次取一个球.
(1)试问:一共有多少种不同的结果,请列出所有可能的结果;
(2)若摸到红球时得2分,摸到黑球时得1分,求3次摸球所得总分为5的概率.
(本小题13分)已知向量,
(1)当∥
时,求
的值;
(2)求在
上的值域.