(本小题满分14分)已知函数,且对任意
,都有
.
(1)求,
的关系式;
(2)若存在两个极值点
,
,且
,求出
的取值范围并证明
;
(3)在(2)的条件下,判断零点的个数,并说明理由.
已知多面体中, 四边形
为矩形,
,
,平面
平面
,
、
分别为
、
的中点,且
,
.
(1)求证:平面
;
(2)求证:平面
;
(3)设平面将几何体
分成的两个锥体的体积分别为
,
,求
的值.
已知函数.
(1)若在
上存在零点,求实数
的取值范围;
(2)当时,若对任意的
,总存在
使
成立,求实数
的取值范围.
如图,椭圆过点P(1,
),其左、右焦点分别为F1,F2,离心率e=
, M, N是直线x=4上的两个动点,且
·
=0.
(1)求椭圆的方程;
(2)求MN的最小值;
(3)以MN为直径的圆C是否过定点?
已知函数f(x)=ax2-(2a+1)x+2lnx(a∈R).
(1)若曲线y=f(x)在x=1和x=3处的切线互相平行,求a的值;
(2)当a≤0时,求f(x)的单调区间。
已知函数y=x-1,令x=―4,―3,―2,-1,0,1,2,3,4,可得函数图象上的九个点,在这九个点中随机取出两个点P1(x1,y1),P2(x2,y2),
(1)求P1,P2两点在双曲线xy=6上的概率;
(2)求P1,P2两点不在同一双曲线xy=k(k≠0)上的概率。