本题共有3个小题,第(1)小题满分4分,第(2)小题满分7分,第(3)小题满分7分.
各项均为正数的数列的前
项和为
,且对任意正整数
,都有
.
(1)求数列的通项公式;
(2)如果等比数列共有
项,其首项与公比均为
,在数列
的每相邻两项
与
之间插入
个
后,得到一个新的数列
.求数列
中所有项的和;
(3)如果存在,使不等式
成立,求实数
的范围.
提高过江大桥的车辆通行能力可改善整个城市的交通状况.在一般情况下,大桥上的车流速度(单位:千米/小时)是车流密度
(单位:辆/千米)的函数.当桥上的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0;当车流密度不超过20辆/千米时,车流速度为60千米/小时,研究表明;当
时,车流速度
是车流密度
的一次函数.
(1)当时,求函数
的表达式.
(2)当车流密度为多大时,车流量(单位时间内通过桥上某观查点的车辆数,单位:
辆/每小时)可以达到最大,并求最大值(精确到1辆/每小时).
已知函数.(
>0且
≠1.)
(1)求f(x)的定义域.
(2)判断f(x)的奇偶性并予以证明.
(3)当0<<1时,求使f(x)>0的x的解集.
设函数的定义域为集合
,不等式
的解集为集合
.
(1)求集合,
;(2)求集合
,
.
不用计算器计算:.
已知数列的前n项和为构成数列
,数列
的前n项和构成数列
.若
,则
(1)求数列的通项公式;
(2)求数列的通项公式.