(本题满分16分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分6分.
已知椭圆(
)的左、右焦点分别为
、
,点
,过点
且与
垂直的直线交
轴负半轴于点
,且
.
(1)求证:△是等边三角形;
(2)若过、
、
三点的圆恰好与直线
:
相切,求椭圆
的方程;
(3)设过(2)中椭圆的右焦点
且不与坐标轴垂直的直线
与
交于
、
两点,
是点
关于
轴的对称点.在
轴上是否存在一个定点
,使得
、
、
三点共线,若存在,求出点
的坐标;若不存在,请说明理由.
(本小题满分14分)已知函数.
(Ⅰ)函数在区间
上是增函数还是减函数?证明你的结论;
(Ⅱ)当时,
恒成立,求整数
的最大值;
(Ⅲ)试证明:.
设数列为单调递增的等差数列
且
依次成等比数列.
(Ⅰ)求数列的通项公式
;
(Ⅱ)若求数列
的前
项和
;
(Ⅲ)若,求证:
已知某公司生产某品牌服装的年固定成本为10万元,每生产一千件,需要另投入2.7万元.设该公司年内共生产该品牌服装千件并全部销售完,每千件的销售收入为
万元,且
.
(I)写出年利润(万元)关于年产量
(千件)的函数关系式;
(Ⅱ)年生产量为多少千件时,该公司在这一品牌服装的生产中所获年利润最大?
设函数满足:对任意的实数
有
(Ⅰ)求的解析式;
(Ⅱ)若方程有解,求实数
的取值范围.
三棱锥中,
,
,
.
(Ⅰ)求证:平面平面
;
(Ⅱ)若,且异面直线
与
的夹角为
时,求二面角
的余弦值.