(本题满分16分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分6分.
已知椭圆
(
)的左、右焦点分别为
、
,点
,过点
且与
垂直的直线交
轴负半轴于点
,且
.
(1)求证:△
是等边三角形;
(2)若过
、
、
三点的圆恰好与直线
:
相切,求椭圆
的方程;
(3)设过(2)中椭圆
的右焦点
且不与坐标轴垂直的直线
与
交于
、
两点,
是点
关于
轴的对称点.在
轴上是否存在一个定点
,使得
、
、
三点共线,若存在,求出点
的坐标;若不存在,请说明理由.
如图,已知椭圆
的长轴为
,过点
的直线
与
轴垂直,直线
所经过的定点恰好是椭圆的一个顶点,且椭圆的离心率
(1)求椭圆的标准方程;
(2)设
是椭圆上异于
、
的任意一点,
轴,
为垂足,延长
到点
使得
,连接
并延长交直线
于点
,
为
的中点.试判断直线
与以
为直径的圆
的位置关系.
如图,四棱锥
的侧面
垂直于底面
,
,
,
,
在棱
上,
是
的中点,二面角
为
(1)求
的值;
(2)求直线
与平面
所成角的正弦值.
某高校在2012年的自主招生考试成绩中随机抽取100名学生的笔试成绩,按成绩分组:第1组
,第2组
,第3组
,第4组
,第5组
得到的频率分布直方图如图所示
(1)分别求第3,4,5组的频率;
(2)若该校决定在第3,4,5 组中用分层抽样的方法抽取6名学生进入第二轮面试,
①已知学生甲和学生乙的成绩均在第3组,求学生甲和学生乙同时进入第二轮面试的概率;
②学校决定在这6名学生中随机抽取2名学生接受考官
的面试,第4组中有
名学生被考官
面试,求
的分布列和数学期望.
已知
的内角
、
、
的对边分别为
、
、
,
,且
(1)求角
;
(2)若向量
与
共线,求
、
的值.
(本小题满分14分)
已知函数
.
(Ⅰ)当
时,求函数
的单调区间;
(Ⅱ)是否存在实数
,使
恒成立,若存在,求出实数
的取值范围;若不存在,说明理由.