某公司生产的某种商品每件成本为20元,经过市场调研发现,这种商品在未来40天内的日销售量m(件)与时间t(天)满足一次函数且关系如下表:
时间t(天) |
1 |
3 |
6 |
10 |
36 |
… |
日销售量m(件) |
94 |
90 |
84 |
76 |
24 |
… |
未来40天内,每天的销售价格y(元)与时间t(天)的函数关系式如下:
每天的销售价格y(元) |
当1≤t≤20时,y1=![]() |
当20<t≤40时,y2=![]() |
(1)求日销售量m(件)与时间t(天)的函数关系;
(2)请预测未来40天中哪一天的日销售利润最大,最大日销售利润是多少;
(3)在实际销售的前20天中,该公司决定每销售一件商品就捐赠a元(a<4)给希望工程,公司通过销售记录发现,前20天中,每天扣除捐赠后的日销售利润随时间t(天)的增大而增大,求a的取值范围.
已知二次函数(m为常数).
求证:不论m为何值,该二次函数图象的顶点P都在函数
的图象上;
若顶点P的横、纵坐标相等,求P点坐标
有3张背面相同的卡片,正面分别写着数字“1”、“2”、“3”.将卡片洗匀后背面朝上放在桌面上.若小明从中任意抽取一张,则抽到奇数的概率是 ;
若小明从中任意抽取一张后,小亮再从剩余的两张卡片中抽取一张,规定:抽到的两张卡片上的数字之和为奇数,则小明胜,否则小亮胜.你认为这个游戏公平吗?请用 画树状图或列表的方法说明你的理由.
已知正比例函数(k≠0)和反比例函数
的图象都经过点(-2,1).
求这两个函数的表达式;
试说明当x为何值时,
如图,在△ABC中,AB=AC.作∠BAC的角平分线,交BC于点D(尺规作图,保留痕迹);
在AD的延长线上任取一点E,连接BE、CE. 求证:△BDE≌△CDE;
当AE=2AD时,四边形ABEC是菱形.请说明理由.
为了了解某校九年级学生的体质健康状况,从该校九年级学生中随机抽取了40名学生进行调查.将调查结果绘制成如下统计表和统计图.请根据所给信息解答下列问题:]
成绩 |
频数 |
频率 |
不及格 |
3 |
0.075 |
及格 |
|
0.2 |
良好 |
17 |
0.425 |
优秀 |
|
|
合计 |
40 |
1 |
补充完成频数统计表;
求出扇形统计图的“优秀”部分的圆心角度数;
若该校九年级共有200名学生,试估计该校体质健康状况达到良好及以上的学生总人数.