有A,B两个黑布袋,A布袋中有两个完全相同的小球,分别标有数字1和2.B 布袋中有三个完全相同的小球,分别标有数字-1,-2和-3.小明从A布袋中随机取出一个小球,记录其标有的数字为x,再从B布袋中随机取出一个小球,记录其标有的数字为y,这样就确定点Q的一个坐标为.
(1)用列表或画树状图的方法写出点Q的所有可能坐标;
(2)求点Q落在抛物线y=x2-2x-1上的概率.
有一个不透明口袋,装有分别标有数字1,2,3,4的4个小球(小球除数字不同外,其余都相同),另有3张背面完全一样、正面分别写有数字1,2,3的卡片.小敏从口袋中任意摸出一个小球,小颖从这3张背面朝上的卡片中任意摸出一张,然后计算小球和卡片上的两个数的积.
(1)请你用列表或画树状图的方法,求摸出的这两个数的积为6的概率;
(2)小敏和小颖做游戏,她们约定:若这两个数的积为奇数,小敏赢;否则,小颖赢.你认为该游戏公平吗?为什么?如果不公平,请你修改游戏规则,使游戏公平.
如图,点E是正方形ABCD的边AB上任意一点,过点D作DF⊥DE交BC的延长线于点F.求证:DE=DF.
(6分)如图所示,某幼儿园有一道长为16米的墙,计划用32米长的围栏靠墙围成一个面积为120平方米的矩形草坪ABCD.求该矩形草坪BC边的长.
如图1,在平面直角坐标系中,为坐标原点.直线
与抛物线
同时经过
.
(1)求的值.
(2)点是二次函数图象上一点,(点
在
下方),过
作
轴,与
交于点
,与
轴交于点
.求
的最大值.
(3)在(2)的条件下,是否存在点,使
和
相似?若存在,求出
点坐标,不存在,说明理由.
中,AB=AC,将线段AB绕点A按逆时针方向旋转
得到线段AD,其中
.连结BD,CD,
.
(1)若,
,在图1中补全图形,并写出m值.
(2)如图2,当为钝角,
时 ,
值是否发生改变?证明你的猜想.
(3) 如图3,,
,BD与AC相交于点O,求
与
的面积比.