(本小题满分12分)某市调研考试后,某校对甲、乙两个文科班的数学考试成绩进行分析,规定:大于或等于120分为优秀,120分以下为非优秀.统计成绩后,得到如下的列联表,
|
优秀 |
非优秀 |
合计 |
甲班 |
![]() |
![]() |
![]() |
乙班 |
![]() |
![]() |
![]() |
合计 |
![]() |
![]() |
![]() |
(1)根据列联表的数据,若按99.9%的可靠性要求,能否认为“成绩与班级有关系”;
(2)若按下面的方法从甲班优秀的学生中抽取一人:把甲班优秀的10名学生从2到11进行编号,先后两次抛掷一枚均匀的骰子,出现的点数之和为被抽取人的序号.试求抽到9号或10号的概率.
参考公式与临界值表:.
![]() |
0.100 |
0.050 |
0.025 |
0.010 |
0.001 |
![]() |
2.706 |
3.841 |
5.024 |
6.635 |
10.828 |
已知,数列
的前
项和为
,点
在曲线
上
,
且
(1)求数列的通项公式(2) 求证:
国家公务员考试,某单位已录用公务员5人,拟安排到A、B、C三个科室工作,但甲必须安排在A科室,其余4人可以随机安排。
(1)求每个科室安排至少1人至多2人的概率;
(2)设安排在A科室的人数为随机变量X,求X的分布列和数学期望。
设函数
(1)求函数的最小正周期;
(2)若函数的图像与函数
的图像关于原点对称,求
的值。
已知数列的前
项和为
,并且满足
,
.
(1)求的通项公式;
(2)令,问是否存在正整数
,对一切正整数
,总有
?若存在,求出的值,若不存在,说明理由.
设函数,其中
,
.
(1)求函数的单调增区间;
(2)在中,
分别是角
的对边,
,
,
,求
的面积.