(本小题12分)已知直线的参数方程是
,圆C的极坐标方程为
.
(1)求圆心C的直角坐标;
(2)由直线上的点向圆C引切线,求切线长的最小值.
(本小题满分10分)选修4—3:坐标系与参数方程
已知直线l经过点P(,1),倾斜角α=
,圆C的极坐标方程为
=
cos(θ-
).
(Ⅰ)写出直线l的参数方程,并把圆C的方程化为直角坐标方程;
(Ⅱ)设l与圆C相交于A,B两点,求点P到A,B两点的距离之积.
(本小题满分10分,选修4—2:矩阵与变换)
已知矩阵,
,若矩阵
对应的变换把直线
变为直线
,求直线
的方程.
(本小题满分10分)选修4—1:几何证明选讲
如图,已知是
的直径,
是
的切线,
为切点,
,交
于点
,连接
、
、
、
,延长
交
于
.
(1)证明:;
(2)证明:.
(本小题满分14分)设函数(
).
(1)当时,求
的极值;
(2)求函数的单调递增区间;
(3)若函数有两个极值点
,
,且
,记
表示不大于
的最大整数,试比较
与
的大小.
(本小题满分12分)数列的前n项和为
,且
(1)求数列的通项公式;
(2)若数列满足:
,求数列
的通项公式;
(3)令,求数列
的 n项和
.