如图,四棱锥中,底面
是边长为2的正方形,其余四个侧面都是侧棱长为
的等腰三角形,且
.
(1)求证:平面
;
(2)是
的中点,求
与平面
所成角的正切值.
设为数列
的前n项和,且对任意
都有
(Ⅰ)求数列的通项公式;
(Ⅱ)设,求数列
的前
项和.
已知函数(
)的周期为
.
(Ⅰ)求的值及
的解析式;
(Ⅱ)在△ABC中,角A,B,C的对边分别是,且满足
,
求的值.
已知函数
(Ⅰ)当,且
是
上的增函数,求实数
的取值范围;;
(Ⅱ)当,且对任意
,关于
的方程
总有三个不相等的实数根,求实数
的取值范围.
已知分别是椭圆
的左、右顶点,点
在椭圆
上,且直线
与直线
的斜率之积为
.
(Ⅰ)求椭圆的方程;
(Ⅱ)如图,已知是椭圆
上不同于顶点的两点,直线
与
交于点
,直线
与
交于点
.若弦
过椭圆的右焦点
,求直线
的方程.
如图,四棱锥的底面是直角梯形,
,
,
和
是两个边长为2的正三角形,,
为
的中点,
为
的中点.
(Ⅰ)求证:;
(Ⅱ)求直线与平面
所成角的正弦值.