已知抛物线

(1)若点
是抛物线
上一点,求证过点
的抛物线
的切线方程为:
;
(2)点
是抛物线
准线上一点,过点
作抛物线的两条切线,切点分别为
,求
的最小值,并求相应的点
的坐标.
(本小题满分12分)
如图,在四棱锥P-ABCD中,底面ABCD为正方形,且PD
平面ABCD,PD=AB=1,E,F分别是PB,AD的中点
(I)证明:EF//平面PCD
(II)求二面角B-CE-F的大小
(文)已知甲,乙两名射击运动员各自独立地射击1次命中10环的概率分别为
,
(I)求乙在第3次射击时(每次射击相互独立)才首次命中10环的概率
(II)若甲乙两名运动员各自独立地射击1次,求两人中恰有一人命中10环的概率
(本小题满分12分)
(理)已知甲,乙两名射击运动员各自独立地射击1次,命中10环的概率分别为
,x(x>
);且乙运动员在2次独立射击中恰有1次命中10环的概率为
(I)求x的值
(II)若甲,乙两名运动员各自独立地射击1次,设两人命中10环的次数之和为随机变量ξ,求ξ的分布列及数学期望
(本小题满分12分)在△ABC中,
·
=1,
·
=-3
(I)求△ABC的边AB的长
(II)求
的值
已知函数
.
(Ⅰ)当
时,求函数
在
,
上的最大值、最小值;
(Ⅱ)令
,若
在
上单调递增,求实数
的取值范围.