已知曲线的参数方程为
为参数,
),直线
在参数方程是
为参数),曲线
与直线
有一个公共点在
轴上,以坐标原点为极点,
轴的正半轴为极轴建立极坐标系。
(1)求曲线的普通方程;
(2)若点在曲线
上,求
的值。
(本小题满分12分)
设命题,命题
(1)如果,且
为真时,求实数
的取值范围;
(2)若是
的充分不必要条件时,求实数
的取值范围.
(本小题满分12分) 已知函数,
(1)设函数,求函数
的单调区间;
(2)若在区间(
)上存在一点
,使得
成立,求
的取值范围.
(本小题满分12分)
设数列对任意正整数n都成立,m为大于—1的非零常数。
(1)求证是等比数列;
(2设数列
求证:
如图,有一块矩形空地,要在这块空地上辟一个内接四边形为绿地,使其四个顶点分别落在矩形的四条边上,已知AB=(
>2),BC=2,且AE=AH=CF=CG,设AE=
,绿地面积为
.
(1)写出关于
的函数关系式,并指出这个函数的定义域;
(2)当AE为何值时,绿地面积最大?
(本小题满分12分).设p:实数x满足,其中
,命题
实数
满足
.
(I)若且
为真,求实数
的取值范围;
(II)若是
的充分不必要条件,求实数a的取值范围.