如图1,在直角梯形中,
,
,
, 点
为
中点.将
沿
折起, 使平面
平面
,得到几何体
,如图2所示.
(1)在上找一点
,使
平面
;
(2)求点到平面
的距离.
在△ABC中,边a,b,c分别对应角A、B、C,且
(1)求角B的值;
(2)若求△ABC的面积
(本小题满分12分)
已知数列的前
项和
.
(Ⅰ)求数列{}的通项公式;
(Ⅱ)设,求数列{
}的前
项和.
(本小题满分10分)
某大学开设甲、乙、丙三门选修课,学生是否选修哪门课互不影响. 已知学生小张只选甲的概率为,只选修甲和乙的概率是
,至少选修一门的概率是
,用
表示小张选修的课程门数和没有选修的课程门数的乘积.
(Ⅰ)求学生小张选修甲的概率;
(Ⅱ)记“函数为
上的偶函数”为事件
,求事件
的概率;
(Ⅲ)求的分布列和数学期望;
. (本小题满分10分)如图,在三棱锥中,
底面
,点
,
分别在棱
上,且
(Ⅰ)求证:平面
;
(Ⅱ)当为
的中点时,求
与平面
所成的角的大小;
(Ⅲ)是否存在点使得二面角
为直二面角?并说明理
由.
(本小题满分8分)
已知函数的图像的一部分如图所示。
(Ⅰ)求函数的解析式;
(Ⅱ)求函数的最值;