(本小题满分12分)设到定点
的距离和它到直线
距离的比是
.
(Ⅰ)求点的轨迹方程;
(Ⅱ)为坐标原点,斜率为
的直线过
点,且与点
的轨迹交于点
,
,若
,求△
的面积.
已知椭圆C的离心率为,直线
被以椭圆的短轴为直径的圆截得弦长为
,抛物线
以原点为顶点,椭圆的右焦点为焦点.
(Ⅰ)求椭圆与抛物线
的方程;
(Ⅱ)已知,
是椭圆
上两个不同点,且
⊥
,判定原点
到直线
的距离是否为定值,若为定值求出定值,否则,说明理由.
已知等差数列的首项
,公差
,且
的第二项、第五项、第十四项成等比数列。
(1)求数列的通项公式;
(2)设,记
为数列
的前n项和,求
并说明是否存在最大的整数t,使得对任意的n均有
总成立?若存在,求出t;若不存在,请说明理由.
如图,在几何体中,四边形
均为边长为1的正方形.
(1)求证:.
(2)求该几何体的体积.
已知函数
(1)求函数的最小正周期和对称轴方程;
(2)将的图像左移
个单位,再向上移1个单位得到
的图像,试求
在区间
的值域.
已知、
、c为正数,
(1)若直线2x-(b-3)y+6=0与直线bx+ay-5=0互相垂直,试求的最小值;
(2)求证:.