(本小题满分12分)设到定点
的距离和它到直线
距离的比是
.
(Ⅰ)求点的轨迹方程;
(Ⅱ)为坐标原点,斜率为
的直线过
点,且与点
的轨迹交于点
,
,若
,求△
的面积.
某校高三年级有男学生105人,女学生126人,教师42人,用分层抽样的方法从中抽取13人进行问卷调查,设其中某项问题的选择,分别为“同意”、“不同意”两种,且每人都做了一种选择,下面表格中提供了被调查人答卷情况的部分信息.
(1)完成此统计表;
同意 |
不同意 |
合计 |
|
教师 |
1 |
||
女学生 |
4 |
||
男学生 |
2 |
(2)估计高三年级学生“同意”的人数;
(3)从被调查的女学生中选取2人进行访谈,求选到两名学生中恰有一人“同意”,一人“不同意”的概率.
已知是递减的等差数列,
是方程
的根.
(1)求的通项公式;
(2)求数列的前n项和.
如图所示,在平面四边形ABCD中,AD=1,CD=2,AC=.
(1)求cos∠CAD的值;
(2)若cos∠BAD=,sin∠CBA=
,求BC的长.
已知函数为自然对数的底数).
(1)求曲线在
处的切线方程;
(2)若是
的一个极值点,且点
,
满足条件:
.
(ⅰ)求的值;
(ⅱ)若点,判断
三点是否可以构成直角三角形?请说明理由.
设椭圆的左、右焦点分别为F1,F2,右顶点为A,上顶点为B.已知|AB|=
|F1F2|.
(1)求椭圆的离心率;
(2)设P为椭圆上异于其顶点的一点,以线段PB为直径的圆经过点F1,经过原点O的直线l与该圆相切,求直线l的斜率.