(本小题满分14分)已知椭圆过点
,且长轴长等于4.
(1)求椭圆C的方程;
(2)是椭圆C的两个焦点,圆O是以
为直径的圆,直线
与圆O相切,并与椭圆C交于不同的两点A,B,若
,求
的值.
(本小题满分12分)已知椭圆的离心率为
,椭圆
的右焦点
和抛物线
的焦点相同.
(1)求椭圆的方程.
(2)如图,已知直线与椭圆
及抛物线
都有两个不同的公共点,且直线
与椭圆
交于
两点;过焦点
的直线
与抛物线
交于
两点,记
,求
的取值范围.
(本小题满分12分)某校对参加高校自主招生测试的学生进行模拟训练,从中抽出N名学生,其数学成绩的频率分布直方图如图所示.已知成绩在区间[90,100]内的学生人数为2人。
(1)求N的值并估计这次测试数学成绩的平均分和众数;
(2)学校从成绩在[70,100]的三组学生中用分层抽样的方法抽取12名学生进行复试,若成绩在[80,90)这一小组中被抽中的学生实力相当,且能通过复试的概率均为,设成绩在[80,90)这一小组中被抽中的学生中能通过复试的人数为
,求
的分布列和数学期望.
(本小题满分12分)如图,直角梯形与等腰直角三角形
所在的平面互相垂直.
∥
,
,
,
.
(1)求证:;
(2)求直线与平面
所成角的正弦值;
(3)线段上是否存在点
,使
// 平面
?若存在,求出
;若不存在,说明理由.
(本小题满分12分)设等差数列的前
项和为
,且
,
,
(1)求等差数列的通项公式
.
(2)令,数列
的前
项和为
.证明:对任意
,都有
.
如图,在棱长为的正方体
中,
为
的中点,
为
上任意一点,
为
上任意两点,且
的长为定值,则下面的四个值中不为定值的是()
A.点![]() ![]() |
B.三棱锥![]() |
C.直线![]() ![]() |
D.二面角![]() |