(本小题满分14分)已知椭圆的中心在坐标原点,长轴长为
,离心率
,过右焦点
的直线
交椭圆于
,
两点.
(1)求椭圆的方程;
(2)当直线的斜率为1时,求
的面积;
(3)若以,
为邻边的平行四边形是矩形,求满足该条件的直线
的方程.
如图所示,在直三棱柱中,
,
,
,
,
是棱
的中点.(Ⅰ)证明:
平面
;
(Ⅱ)求二面角的余弦值.
已知向量=(1,1),向量
与向量
的夹角为
,且
.
(1)求向量; (2)设向量
=(1,0),向量
=(cosx,2cos2(
)),其中0<x<
,若
,试求
的取值范围.
已知椭圆C:(a>b>0)的左准线恰为抛物线E:y2 = 16x的准线,直线l:x + 2y – 4 = 0与椭圆相切.(1)求椭圆C的方程;(2)如果椭圆C的左顶点为A,右焦点为F,过F的直线与椭圆C交于P、Q两点,直线AP、AQ与椭圆C的右准线分别交于N、M两点,求证:四边形MNPQ的对角线的交点是定点.
(本小题13分)已知数列{an}的前n项和Sn = 2an– 3×2n + 4 (n∈N*)
(1)求数列{an}的通项公式an;(2)设Tn为数列{Sn – 4}的前n项和,试比较Tn与14的大小.
(本小题满分13分)用一块长为a,宽为b (a>b)的矩形木块,在二面角为(0<
<
)的墙角处围出一个直三棱柱的储物仓(使木板垂直于地面,两边与墙面贴紧,另一边与地面贴紧),试问怎样围才能使储物仓的容积最大?并求出这个最大值.