(本小题满分10分)在平面直角坐标系xOy中,已知抛物 的准线方程为
过点M(0,-2)作抛物线的切线MA,切点为A(异于点O).直线
过点M与抛物线交于两点B,C,与直线OA交于点N.
(1)求抛物线的方程;
(2)试问: 的值是否为定值?若是,求出定值;若不是,说明理由。
(本题满分10分)选修4-1:几何证明选讲.
如图,圆周角的平分线与圆交于点
,过点
的切线与弦
的延长线交于点
,
交
于点
.
(1)求证:;
(2)若四点共圆,且弧
与弧
相等,求
(本题满分12分)
已知函数.
(1)求函数的单调区间;
(2)设函数,若
,使得
成立,求实数
的取值范围;
(3)若方程有两个不相等的实数根
,求证:
(本题满分12分)
已知抛物线,过点
的直线
与抛物线交于
两点,且直线
与
轴交于点C.
(1)求证:成等比数列;
(2)设,试问
是否为定值?若是,求出此定值;若不是,请说明理由.
(本题满分12分)
如图,在三棱柱中,
侧面底面
,侧棱
与底面
成
的角,
,底面
是边长为2的正三角形,其重心为
点,
是线段
上一点,且
.
求证:;
求平面与底面
所成锐二面角的余弦值.
(本题满分12分)
“开门大吉”是某电视台推出的游戏节目.选手面对1~8号8扇大门,依次按响门上的门铃,门铃会播放一段音乐(将一首经典流行歌曲以单音色旋律的方式演绎),选手需正确回答出这首歌的名字,方可获得该扇门对应的家庭梦想基金.在一次场外调查中,发现参赛选手多数分为两个年龄段:20~30;30~40(单位:岁),其猜对歌曲名称与否的人数如图所示.
(1)写出2×2列联表;判断是否有90%的把握认为猜对歌曲名称与否和年龄有关;说明你的理由;(下面的临界值表供参考)
![]() |
0.10 |
0.05 |
0.010 |
0.005 |
![]() |
2.706 |
3.841 |
6.635 |
7.879 |
现计划在这次场外调查中按年龄段选取9名选手,并抽取3名幸运选手,求3名幸运选手中在20~30岁之间的人数的分布列和数学期望.
(参考公式:其中
)