已知函数(
为常数),其图象是曲线
.
(1)当时,求函数
的单调减区间;
(2)设函数的导函数为
,若存在唯一的实数
,使得
与
同时成立,求实数
的取值范围;
(3)已知点为曲线
上的动点,在点
处作曲线
的切线
与曲线
交于另一点
,在点
处作曲线
的切线
,设切线
的斜率分别为
.问:是否存在常数
,使得
?若存在,求出
的值;若不存在,请说明理由.
已知中,角
所对的边分别为
,且满足
.
(1)求角的大小 ;
(2)若,求
周长的取值范围.
等差数列中,
(1)求的通项公式;
(2)设
已知函数.
(1)若,求不等式
的解集;
(2)若不等式的解集为
,求实数
的取值范围.
如图1,在Rt△ABC中,∠C=90°,BC=6,AC=3,D,E分别是AC,AB上的点,且DE∥BC,DE=4,将△ADE沿DE折起到△A1DE的位置,使A1C⊥CD,如图2.
(1)求证:平面
;
(2)过点E作截面平面
,分别交CB于F,
于H,求截面
的面积。
已知圆C:内有一点P(2,2),过点P作直线
交圆C于A、B两点.
(1)当经过圆心C时,求直线l的方程;
(2)当弦AB最短时,写出直线的方程;
(3)当直线的倾斜角为45º时,求弦AB的长.