(本大题满分12分)某校高三年级一次数学考试后,为了解学生的数学学习情况,随机抽取名学生的数学成绩,制成表所示的频率分布表.
组号 |
分组 |
频数 |
频率 |
第一组 |
![]() |
![]() |
![]() |
第二组 |
![]() |
![]() |
![]() |
第三组 |
![]() |
![]() |
![]() |
第四组 |
![]() |
![]() |
![]() |
第五组 |
![]() |
![]() |
![]() |
合计 |
![]() |
![]() |
(1)求、
、
的值;
(2)若从第三、四、五组中用分层抽样方法抽取名学生,并在这
名学生中随机抽取
名学生与张老师面谈,求第三组中至少有
名学生与张老师面谈的概率
(本小题满分12分)
已知函数,函数
是区间[-1,1]上的减
函数.
(I)求的最大值;
(II)若上恒成立,求t的取值范围;
(Ⅲ)讨论关于x的方程的根的个数.
(本小题满分12分)
设、
分别是椭圆
的左、右焦点.
(Ⅰ)若是该椭圆上的一个动点,求
·
的最大值和最小值;
(Ⅱ)设过定点的直线
与椭圆交于不同的两点
、
,且∠
为锐角(其中
为坐标原点),求直线
的斜率
的取值范围.
(本小题满分12分)
如图,在四棱锥P-ABCD中,PA底面ABCD,
DAB为直角,AB∥CD,AD=CD=2AB,E、F分别为PC、CD的中点.
(Ⅰ)试证:AB平面BEF;
(Ⅱ)设PA=k·AB,若平面与平面
的夹角大于
,求k的取值范围.
(本小题满分12分)
某市举行一次数学新课程骨干培训,共邀请15名使用不同版本教材的教师,数据如下表所示:
版本 |
人教A版 |
人教B版 |
||
性别 |
男教师 |
女教师 |
男教师 |
女教师 |
人数 |
6 |
3 |
4 |
2 |
(1)从这15名教师中随机选出2名,则2人恰好是教不同版本的男教师的概率是多少?
(2)培训活动随机选出2名代表发言,设发言代表中使用人教B版的女教师人数为,求随机变量
的分布列和数学期望
.
(本小题满分12分)
设锐角三角形的内角
的对边分别为
,且
.
(Ⅰ)求的大小;
(Ⅱ)求的取值范围.