(本大题满分12分)从某学校的名男生中随机抽取
名测量身高,被测学生身高全部介于
和
之间,将测量结果按如下方式分成八组:第一组
,第二组
,第八组
,下图是按上述分组方法得到的频率分布直方图的一部分,已知第一组与第八组人数相同,第六组的人数为
人.
(Ⅰ)求第七组的频率;
(Ⅱ)估计该校的名男生的身高的中位数以及身高在
以上(含
)的人数;
(Ⅲ)若从身高属于第六组和第八组的所有男生中随机抽取两名男生,记他们的身高分别为,事件
,事件
,求
(本小题满分16分)如图,已知矩形ABCD中,AB=10,BC=6,沿矩形的对角线BD把折起,使A移到A1点,且A1在平面BCD上的射影O恰好在CD上。
(Ⅰ)求证:
(Ⅱ)求证:平面平面
(本小题满分14分)已知:在函数的图象上,以
为切点的切线的倾斜角为
(Ⅰ)求的值;
(Ⅱ)是否存在最小的正整数,使得不等式
恒成立?如果存在,请求出最小的正整数
,如果不存在,请说明理由。
(本小题满分14分)在直角坐标系中,O为坐标原点,设直线经过点
,且与
轴交于点F(2,0)。
(Ⅰ)求直线的方程;
(Ⅱ)如果一个椭圆经过点P,且以点F为它的一个焦点,求椭圆的标准方程。
(本小题满发14分)已知
(Ⅰ)求的值;
(Ⅱ)求的值
求函数的最大值和最小值。