(本小题满分10分)选修4—5:不等式选讲
设函数的最小值为a.
(Ⅰ)求a;
(Ⅱ)已知两个正数m,n满足,求
的最小值.
(本小题满分12分)
已知各项均为正数的数列满足
, 且
,
其中.
(I)求数列的通项公式;
(II)设数列
的前
项和为
,令
,其中
,试比较
与
的大小,并加以证明.
(本小题满分12分)
上海世博会深圳馆1号作品《大芬丽莎》是由大芬村507名画师集体创作的999幅
油画组合而成的世界名画《蒙娜丽莎》,因其诞生于大芬村,因此被命名为《大芬丽莎》.某部门从参加创作的507名画师中随机抽出100名画师,测得画师年龄情况如下表所示.
分 组 (单位:岁) |
频数 |
频 率 |
![]() |
5 |
0.050 |
![]() |
① |
0.200 |
![]() |
35 |
② |
![]() |
30 |
0.300 |
![]() |
10 |
0.100 |
合计 |
100 |
1.00 |
(1)频率分布表中的①、②位置应填什么数据?并在答题卡中补全频率分布直方图,
再根据频率分布直方图估计这507名画师中年龄在
岁的人数(结果取整数);
(2)在抽出的100名画师中按年龄再采用分层抽样法抽取20人参加上海世博会深
圳馆志愿者活动,其中选取2名画师担任解说员工作,记这2名画师中“年龄低于30岁”的人数为
,求
的分布列及数学期望.
(本小题满分12分)
已知向量,函数
,且
图
象上一个最高点的坐标为
,与之相邻
的一个最低点的坐标为
.
(1)求的解析式;
(2)在△ABC中,是角A、B、C所对的边,且满足
,求角B的大
小以及的取值范围.
如图,过曲线:
上一点
作曲线
的切线
交
轴于点
,又过
作
轴的垂线交曲线
于点
,然后再过
作曲线
的切线
交
轴于点
,又过
作
轴的垂线交曲线
于点
,
,以此类推,过点
的切线
与
轴相交于点
,再过点
作
轴的垂线交曲线
于点
(
N
).
(1) 求、
及数列
的通项公式;
(2) 设曲线与切线
及直线
所围成的图形面积为
,求
的表达式;
(3) 在满足(2)的条件下, 若数列的前
项和为
,求证:
N
.
(本小题满分14分)
设函数在
上的导函数为
,
在
上的导函数为
,若在
上,
恒成立,则称函数
在
上为“凸函数”.已知
.
(1)若为区间
上的“凸函数”,试确定实数
的值;
(2)若当实数满足
时,函数
在
上总为“凸函数”,求
的最大值.