一位网民在网上光顾某淘宝小店,经过一番浏览后,对该店铺中的五种商品有购买意向.已知该网民购买
两种商品的概率均为
,购买
两种商品的概率均为
,购买
种商品的概率为
.假设该网民是否购买这五种商品相互独立.
(1)求该网民至少购买4种商品的概率;
(2)用随机变量表示该网民购买商品的种数,求
的概率分布和数学期望.
已知不等式
的解集为A,函数
的定义域为B.
(Ⅰ)若,求
的取值范围;
(Ⅱ)证明:函数的图象关于原点对称。
(本题13分)
已知f(x)=lnx+x2-bx.
(1)若函数f(x)在其定义域内是增函数,求b的取值范围;
(2)当b=-1时,设g(x)=f(x)-2x2,求证函数g(x)只有一个零点.
(本小题满分13分) 2010年11月在广州召开亚
运会,某小商品公司开发一种亚运会纪念品,每件产品的成本是15元,销售价是20元,月平
均销售a件,通过改进工艺,产品的成本不变,质量和技术含金量提高,市场分析的结果表明:如果产品的销售价提高的百分率为x(0<x<1),那么月平均
销售量减少的百分率为x2,记改进工艺后,该公司销售纪念品的月平均利润是y(元).
(1)写出y与x的函数关系式;
(2)改进工艺后,确定该纪念品的售价,使该公司销售该纪念品的月平均利润最大.
(本题13分)
向量=(
+1,
),
=(1,4cos(x
+)),设函数
=
(
∈R,且
为常数).
(1)若为任意实数,求
的最小正周期;
(2)若在[0,)上的最大值与最小值之和为7,求
的值.
(本题12分)
已知二次函数 (
,c为常数且1《c《4)的导函数的图象如图所示:
(1).求
的值;
(2)记,求
在
上的最大值
。