“ALS冰桶挑战赛”是一项社交网络上发起的筹款活动,活动规定:被邀请者要么在24小时内接受挑战,要么选择为慈善机构捐款(不接受挑战),并且不能重复参加该活动.若被邀请者接受挑战,则他需在网络上发布自己被冰水浇遍全身的视频内容,然后便可以邀请另外3个人参与这项活动.假设每个人接受挑战与不接受挑战是等可能的,且互不影响.
(Ⅰ)若某被邀请者接受挑战后,对其他3个人发出邀请,则这3个人中至少有2个人接受挑战的概率是多少?
(Ⅱ)假定(Ⅰ)中被邀请到的3个人中恰有两人接受挑战.根据活动规定,现记为接下来被邀请到的6个人中接受挑战的人数,求
的分布列和均值(数学期望).
(本题满分12分)已知是定义域为[-3,3]的函数,并且设
,
,其中常数c为实数.(1)求
和
的定义域;(2)如果
和
两个函数的定义域的交集为非空集合,求c的取值范围;(3)当
在其定义域内是奇函数,又是增函数时,求使
的自变量
的取值范围.
设函数为奇函数,导函数
的最小值为-12,函数
的图象在点P
处的切线与直线
垂直.(1)求a,b,c的值;(2)求
的各个单调区间,并求
在
[-1, 3]时的最大值和最小值.
在等比数列中,
,并且
(1)求
以及数列
的通项公式;(2)设
,求当
最大时
的值.
设函数,其中向量
,
(1)求函数
的最小正周期和单调递增区间;(2)当
时,求函数
的值域.
甲、乙两颗卫星同时监测台风,根据长期经验得知,甲、乙预报台风准确的概率分别为0.8和0.75.求:(1) 在同一次预报中,甲、乙两卫星只有一颗预报准确的概率;(2) 若甲独立预报4次,至少有3次预报准确的概率.