阅读下面材料:
小明遇到这样一个问题:如图1,在Rt△ABC中,∠ACB=90°,∠A=60°,CD平分∠ACB,试判断BC和AC、AD之间的数量关系.
小明发现,利用轴对称做一个变化,在BC上截取CA′=CA,连接DA′,得到一对全等的三角形,从而将问题解决(如图2).
图1 图2
请回答:(1)在图2中,小明得到的全等三角形是△ ≌△ ;
(2)BC和AC、AD之间的数量关系是 .
参考小明思考问题的方法,解决问题:
如图3,在四边形ABCD中,AC平分∠BAD,BC=CD=10,AC=17,AD=9.
求AB的长.
图3
有20筐白菜,以每筐25千克为标准,超过或不足的千克数分别用正、负数来表示,记录如下:
与标准质量的差值 (单位:千克) |
![]() |
![]() |
![]() |
0 |
1 |
2.5 |
筐数 |
1 |
4 |
2 |
3 |
2 |
8 |
(1)20筐白菜中,最重的一筐比最轻的一筐重 千克;
(2)与标准重量比较,20筐白菜总计超过或不足多少千克?
(3)若白菜每千克售价2.6元,则出售这20筐白菜可卖多少元?
我们定义一种新运算:.
(1)求的值.(2)求
的值.
已知、
互为相反数且
,
、
互为倒数,
的绝对值是最小的正整数,
求的值.(注:
=
)
解:∵、
互为相反数且
,∴
,
;
又∵、
互为倒数,∴
;
又∵的绝对值是最小的正整数, ∴
,∴
;
∴原式 .
在数轴上把下列各数表示出来,并用“”连接各数.
,
,
,
,
, 4
小明和小刚做摸纸牌游戏.如图所示,有两组相同的纸牌,每组两张,牌面数字分别是2和3,将两组牌背面朝上,洗匀后从每组牌中各摸出一张,称为一次游戏.当两张牌的牌面数字之积为奇数,小明得2分,否则小刚得1分.这个游戏对双方公平吗?请说明理由.