(1)如图1,平面内有一等腰直角三角板ABC(∠ACB=90°)和一直线MN.过点C作CE⊥MN于点E,过点B作BF⊥MN于点F,试证明线段AF,BF,CE之间的数量关系为AF+BF="2CE" 。
(提示:过点C做BF的垂线,利用三角形全等证明。)
(2)若三角板绕点A顺时针旋转至图2的位置,其他条件不变,试猜想线段AF、BF、CE之间的数量关系,并证明你的猜想。
(3)若三角板绕点A顺时针旋转至图3的位置,其他条件不变,则线段AF、BF、CE之间的数量关系为
图1 图2 图3
如图,二次函数y=-x2+nx+n2-9(n为常数)的图像经过坐标原点和x轴上另一点A,顶点在第一象限.
(1)求n的值和点A坐标;
(2)已知一次函数y=-2x+b(b >0)分别交x轴、y轴于M、N两点.点P是二次函数图像的y轴右侧部分上的一个动点,若PN⊥NM于N点,且△PMN与△OMN相似,求点P坐标.
如图,在平面直角坐标系xOy中,⊙C经过点O,交x轴的正半轴于点B (2,0),P是上的一个动点,且∠OPB=30°.设P点坐标为(m,n).
(1)当n=2,求m的值;
(2)设图中阴影部分的面积为S,求S与n之间的函数关系式,并求S的最大值;
(3)试探索动点P在运动过程中,是否存在整点P(m,n)(横、纵坐标都为整数的点叫整点)?若存在,请求出;若不存在,请说明理由.
如图,折叠矩形ABCD的一边AD使点D落在BC边上的E处,已知折痕AF=10cm,且tan∠FEC=.
(1)求矩形ABCD的面积;
(2)利用尺规作图求作与四边形AEFD各边都相切的⊙O的圆心O(只须保留作图痕迹),并求出⊙O的半径.
已知关于x的一元二次方程x2-2x+m=0有两个不相等的实数根.
(1)求实数m的最大整数值;
(2)在(1)的条件下,方程的实数根是x1,x2(x1>x2),求代数式x1+2x2的值.
在一个口袋中有4个完全相同的小球,把它们分别标号为1,2,3,4.随机地摸取一个小球后放回,再随机地摸出一个小球,请用列举法(画树状图或列表)求下列事件的概率:
(1)两次取得小球的标号相同;
(2)两次取得小球的标号的和等于4.