已知矩形ABCD的一条边AD=8,将矩形ABCD折叠,使得顶点B落在CD边上的P点处.
(1)如图1,已知折痕与边BC交于点O,连结AP、OP、OA.
①求证:△OCP∽△PDA;
②若△OCP与△PDA的面积比为1:4,求边AB的长;
(2)若图1中的点P恰好是CD边的中点,求∠OAB的度数;
(3)如图2,在(1)的条件下,擦去折痕AO、线段OP,连结BP.动点M在线段AP上(点M与点P、A不重合),动点N在线段AB的延长线上,且BN=PM,连结MN交PB于点F,作ME⊥BP于点E.试问当点M、N在移动过程中,线段EF的长度是否发生变化?若变化,说明理由;若不变,求出线段EF的长度.
已知:如图,在□ABCD中,延长AB到点E,使BE=AB,连接DE交BC于点F.
求证:△BEF ≌ △CDF
如图,已知菱形ABCD的边长为2,∠B=60°,点P、Q分别是边BC、CD上的动点(不与端点重合),且BP=CQ.
(1)图中除了△ABC与△ADC外,还有哪些三角形全等,请写出来;
(2)点P、Q在运动过程中,四边形APCQ的面积是否变化,如果变化,请说明理由;如果不变,请求出面积;
(3)当点P在什么位置时,△PCQ的面积最大,并请说明理由.
把一张矩形纸片ABCD按如图方式折叠,使顶点B和点D重合,折痕为EF.若AB = 3 cm,BC =4 cm.
(1)求线段DF的长;
(2)连接BE,求证:四边形BFDE是菱形;
(3)求线段EF的长.
(1)已知计算结果是
,求常数m的值;
(2)已知计算结果是
,求常数A、B的值.
如图,△ABC中,O是AC上的任意一点(不与点A、C重合),过点O作直线MN∥BC,设MN交∠BCA的平分线于点E,交∠BCA的外角平分线于点F.
(1)求证:OE=OF;
(2)当点O运动到何处时,四边形AECF是矩形,并证明你的结论.