游客
题文

已知抛物线与x轴交于A(-3,0)、B(1,0)两点,交y轴于点C(0,-3),点E为直线AC上的一动点,DE∥y轴交抛物线于点D。

(1)求抛物线的解析式;
(2)当点E的坐标(-2,-1),连接AD,点P在x轴上,使∆APC与∆ADC全等,求出点P的坐标;
(3)当点E在直线AC上运动时,是否存在以D、E、O、C为顶点,OC为一边的平行四边形?若存在,试求出动点E的坐标;若不存在,请说明理由

科目 数学   题型 解答题   难度 中等
知识点: 二次函数在给定区间上的最值
登录免费查看答案和解析
相关试题

某机构为了解宿迁市人口年龄结构情况,对宿迁市的人口数据进行随机抽样分析,绘制了尚不完整的统计图表:

人口年龄结构统计表

类别

A

B

C

D

年龄 ( t 岁)

0 t < 15

15 t < 60

60 t < 65

t 65

人数(万人)

4.7

11.6

m

2.7

根据以上信息解答下列问题:

(1)本次抽样调查,共调查了   万人;

(2)请计算统计表中 m 的值以及扇形统计图中“ C ”对应的圆心角度数;

(3)宿迁市现有人口约500万人,请根据此次抽查结果,试估计宿迁市现有60岁及以上的人口数量.

解不等式组 x - 1 < 0 5 x + 2 2 x - 1 ,并写出满足不等式组的所有整数解.

计算: ( π - 1 ) 0 + 8 - 4 sin 45 °

如图,在矩形 ABCD 中,线段 EF GH 分别平行于 AD AB ,它们相交于点 P ,点 P 1 P 2 分别在线段 PF PH 上, P P 1 = PG P P 2 = PE ,连接 P 1 H P 2 F P 1 H P 2 F 相交于点 Q .已知 AG : GD = AE : EB = 1 : 2 ,设 AG = a AE = b

(1)四边形 EBHP 的面积   四边形 GPFD 的面积(填" > "、" = "或" < " )

(2)求证:△ P 1 FQ P 2 HQ

(3)设四边形 P P 1 Q P 2 的面积为 S 1 ,四边形 CFQH 的面积为 S 2 ,求 S 1 S 2 的值.

如图①,甲、乙都是高为6米的长方体容器,容器甲的底面 ABCD 是正方形,容器乙的底面 EFGH 是矩形.如图②,已知正方形 ABCD 与矩形 EFGH 满足如下条件:正方形 ABCD 外切于一个半径为5米的圆 O ,矩形 EFGH 内接于这个圆 O EF = 2 EH

(1)求容器甲、乙的容积分别为多少立方米?

(2)现在我们分别向容器甲、乙同时持续注水(注水前两个容器是空的),一开始注水流量均为25立方米 / 小时,4小时后,把容器甲的注水流量增加 a 立方米 / 小时,同时保持容器乙的注水流量不变,继续注水2小时后,把容器甲的注水流量再一次增加50立方米 / 小时,同时容器乙的注水流量仍旧保持不变,直到两个容器的水位高度相同,停止注水.在整个注水过程中,当注水时间为 t 时,我们把容器甲的水位高度记为 h ,容器乙的水位高度记为 h ,设 h - h = h ,已知 h (米 ) 关于注水时间 t (小时)的函数图象如图③所示,其中 MN 平行于横轴,根据图中所给信息,解决下列问题:

①求 a 的值;

②求图③中线段 PN 所在直线的解析式.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号