游客
题文

(年辽宁阜新12分)已知,在矩形ABCD中,连接对角线AC,将△ABC绕点B顺时针旋转90°得到△EFG,并将它沿直线AB向左平移,直线EG与BC交于点H,连接AH,CG.
(1)如图①,当AB=BC,点F平移到线段BA上时,线段AH,CG有怎样的数量关系和位置关系?直接写出你的猜想;
(2)如图②,当AB=BC,点F平移到线段BA的延长线上时,(1)中的结论是否成立,请说明理由;
(3)如图③,当AB=nBC(n≠1)时,对矩形ABCD进行如已知同样的变换操作,线段AH,CG有怎样的数量关系和位置关系?直接写出你的猜想.

科目 数学   题型 解答题   难度 中等
登录免费查看答案和解析
相关试题

、(2011?常州)在下列实数中,无理数是(  )

A.2 B.0
C. D.

如图,已知直线l经过点A(1,0),与双曲线y

(x>0)交于点B(2,1).过点P(pp-1)(p>1)作x轴的平
行线分别交双曲线y=(x>0)和y=-(x<0)于点MN
(1)求m的值和直线l的解析式;
(2)若点P在直线y=2上,求证:△PMB∽△PNA
(3)是否存在实数p,使得SAMN=4SAMP?若存在,请求出所有满足条件的p的值;若
不存在,请说明理由.

(12分)已知A(1,0)、B(0,-1)、C(-1,2)、D(2,-1)、E(4,2)五个点,抛物线ya(x-1)2k(a>0)经过其中的三个点.
(1)求证:CE两点不可能同时在抛物线ya(x-1)2k(a>0)上;
(2)点A在抛物线ya(x-1)2k(a>0)上吗?为什么?
(3)求ak的值.

(10分)如图1,O为正方形ABCD的中心,

分别延长OAOD到点FE,使OF=2OA
OE=2OD,连接EF.将△EOF绕点O逆时针
旋转角得到△E1OF1(如图2).
(1)探究AE1BF1的数量关系,并给予证明;
(2)当=30°时,求证:△AOE1为直角三角形.

(8分)比较正五边形与正六边形,可以发现它们的相同点和不同点.例如:

它们的一个相同点:正五边形的各边相等,正六边形的各边也相等.
它们的一个不同点:正五边形不是中心对称图形,正六边形是中心对称图形.
请你再写出它们的两个相同点和不同点:
相同点:


不同点:

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号