游客
题文

如图,直线AB、CD相交于点O,∠AOD=3∠BOD+20°.

(1)求∠BOD的度数;
(2)以O为端点引射线OE、OF,射线OE平分∠BOD,且∠EOF=90°,求∠BOF的度数,并画图加以说明.

科目 数学   题型 解答题   难度 中等
登录免费查看答案和解析
相关试题

如图,在平面直角坐标系中,△ABC 的顶点坐标分别为A(-2,0)、B(4,0)、C(0,2).
(1)请用尺规作出△ABC的外接圆⊙P(保留作图痕迹,不写作法);
(2)求出(1)中外接圆圆心P的坐标;
(3)⊙P上是否存在一点Q,使得△QBC与△AOC相似?如果存在,请直接写出点Q 坐标;如果不存在,请说明理由.

已知一次函数y=x+b的图象与x轴,y轴交于点A、B.
(1)若将此函数图象沿x轴向右平移2个单位后经过原点,则b=
(2)若函数y1=x+b图象与一次函数y2=kx+4的图象关于y轴对称,求k、b的值;
(3)当b>0时,函数y1=x+b图象绕点B逆时针旋转n°(0°<n°<180°)后,对应的函数关系式为y=-x+b,求n的值.

如图,以O为圆心的弧度数为60 o,∠BOE=45o,DA⊥OB,EB⊥OB.
(1)求的值;
(2)若OE与交于点M,OC平分∠BOE,连接CM.说明:CM为⊙O的切线;
(3)在(2)的条件下,若BC=1,求tan∠BCO的值.

已知二次函数y=x2+2ax-2.
(1)求证:经过点(0,)且与x轴平行的直线与该函数的图象总有两个公共点;
(2)该函数和y=-x2+(a-3)x+的图象都经过x轴上两个不同的点A、B,求a的值.

桌面上有5张背面相同的卡片,正面分别写着数字“1”、“2”、“3”、“4”、 “5”.将卡片背面朝上洗匀.
(1)小军从中任意抽取一张,抽到偶数的概率是
(2)小红从中同时抽取两张.规定:抽到的两张卡片上的数字之和为奇数,则小军胜,否则小红胜.你认为这个游戏公平吗?请用树状图或表格说明你的理由.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号