(年黑龙江牡丹江农垦10分)如图,在Rt△ABC中,∠ACB=90°,AC=8,BC=6,CD⊥AB于点D.点P从点D出发,沿线段DC向点C运动,点Q从点C出发,沿线段CA向点A运动,两点同时出发,速度都为每秒1个单位长度,当点P运动到C时,两点都停止.设运动时间为t秒.
(1)求线段CD的长;
(2)设△CPQ的面积为S,求S与t之间的函数关系式,并确定在运动过程中是否存在某一时刻t,使得S△CPQ:S△ABC=9:100?若存在,求出t的值;若不存在,说明理由.
(3)当t为何值时,△CPQ为等腰三角形?
如图,在正方形 中,对角线 , 相交于点 ,点 , 是对角线 上的两点,且 .连接 , , , .
(1)证明: .
(2)若 , ,求四边形 的周长.
先化简,再从 ,0,1,2, 中选择一个合适的 的值代入求值. .
计算: .
如图,在直角坐标系中,二次函数 的图象与 轴相交于点 和点 ,与 轴交于点 .
(1)求 、 的值;
(2)点 为抛物线上的动点,过 作 轴的垂线交直线 于点 .
①当 时,求当 点到直线 的距离最大时 的值;
②是否存在 ,使得以点 、 、 、 为顶点的四边形是菱形,若不存在,请说明理由;若存在,请求出 的值.
如图①, 、 是等腰 的斜边 上的两动点, , 且 .
(1)求证: ;
(2)求证: ;
(3)如图②,作 ,垂足为 ,设 , ,不妨设 ,请利用(2)的结论证明:当 时, 成立.