(年陕西省10分)已知抛物线C:y=﹣x2+bx+c经过A(﹣3,0)和B(0,3)两点,将这条抛物线的顶点记为M,它的对称轴与x轴的交点记为N.
(1)求抛物线C的表达式;
(2)求点M的坐标;
(3)将抛物线C平移到C′,抛物线C′的顶点记为M′,它的对称轴与x轴的交点记为N′.如果以点M、N、M′、N′为顶点的四边形是面积为16的平行四边形,那么应将抛物线C怎样平移?为什么?
如图,已知A、B两点的坐标分别为A(0,2)B(﹣2,0),直线AB与反比例函数y=
的图象交于点C和点D(1,a)
(1)求直线AB和反比例函数的函数关系式;
(2)求∠ACO的度数;
(3)将△OBC绕点O顺时针旋转α角(0°<α<90°),得到△OB1C1,当α为多少度时OC1⊥AB,并求此时线段AB1的长.
如图,小明在大楼的窗口P处进行观测,测得山坡上A处的俯角为15°,山脚B处的俯角为60°,已知该山坡的坡角∠ABC=30°点P、H、B、C、A在同一个平面上.点H、B、C在同一条直线上,且PH⊥HC.
(1)山坡AB的坡度为 ;
(2)若山坡AB的长为20米,求大楼的窗口P处距离地面的高度.
如图,分别延长平行四边形ABCD的边CD、AB到E、F,使DE=BF=CD,连接EF,分别交AD,BC于G,H,连接CG,AH
(1)求证:四边形AGCH为平行四边形;
(2)求△DEG和△CGH的面积比.
列方程或方程组解应用题:
现有甲、乙两个空调安装队分别为A、B两个公司安装空调,甲安装队为A公司安装66台空调,乙安装队为B公司安装60台空调,两个安装队同时开工恰好同时安装完成,甲队比乙队平均每天多安装2台空调.求甲、乙两个安装队平均每天各安装多少台空调.
如图,抛物线y=x2+bx+c的顶点为D(﹣1,﹣4),与y轴交于点C(0,﹣3),与x轴交于A,B两点(点A在点B的左侧).
(1)求抛物线的解析式;
(2)连接AC,CD,AD,试证明△ACD为直角三角形;
(3)若点E在抛物线的对称轴上,抛物线上是否存在点F,使以A,B,E,F为顶点的四边形为平行四边形?若存在,求出所有满足条件的点F的坐标;若不存在,请说明理由.